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ABSTRACT

A highly stereoselective synthesis of chiral r-amino-�-lactam through an ynamide-Kinugasa reaction is described. In addition, a mechanistic
model is illustrated here to rationalize the observed diastereoselectivity, which depends on both the initial [3 + 2] cycloaddition step and the
subsequent protonation for which both are highly selective.

Since Staudinger’s first preparation,1 �-lactams have captured
the attention of synthetic and medicinal communities for
nearly a century.2–6 Rendered famous by penicillin, those
substituted with R-amino groups are among the most sought
after �-lactams. Consequently, an impressive array of ste-
reoselective approaches toward chiral R-amino-�-lactams has
been reported.4–6 While the Kinugasa reaction7,8 represents
an elegant approach toward �-lactams, it has remained
relatively unexplored until recently, and this is particularly
true in the development of enantioselective protocols.9–11

With such immense significance, we recognized the unique
potential of an ynamide-Kinugasa reaction. As shown in
Scheme 1, reactions of chiral ynamides 112,13 with nitrones
in a Kinugasa manner would not only lead to a stereoselective
manifold for constructing �-lactams, but also more impor-
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tantly provide a direct synthesis of chiral R-amino-�-lactams
(see 4). We report here a highly stereoselective ynamide-
Kinugasa reaction.

The feasibility of an ynamide-Kinugasa reaction was
readily established by employing ynamide 5 (Scheme 2).
With 0.2 equiv of CuCl and 4.0 equiv of Cy2NMe, the
reaction of 5 with N-benzylidene-N-phenylnitrone proceeded
effectively in CH3CN at rt to give �-lactam cis-6a14 in 73%
yield as the major isomer. X-ray structural analysis unam-
biguously revealed that the relative stereochemistry between
the R- and �-carbons is cis. This suggests that the minor
isomer(s) could be cis-6b and/or trans-6a/6b with a/b
isomers differing at the �-carbon stereochemistry.

The scope of this reaction is distinctly diverse. As shown
in Table 1, we found several interesting features: (1)
Sterically more encumbered auxiliaries retard the reaction

rate (entries 2 and 3 versus 1); (2) CuI is also feasible as a
catalyst and can be more effective than CuCl (entries 3, 6,
8, 13, and 15); and (3) the minor isomer b was assigned as
trans initially based on proton coupling constants15 (entries
5-7, 11, and 13) and was confirmed later via NOE
experiments (vide infra).

An immediate application of this reaction is the preparation
of chiral R-amino-�-lactams (Scheme 3). Toward this goal,
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Scheme 1. An Ynamide-Kinugasa Reaction

Table 1. Scope of the Ynamide-Kinugasa Reaction

a Reaction conditions are as shown in Scheme 2 unless otherwise
indicated. All are isolated yields. b dr is determined by using 1H NMR. All
isomers a are cis. The minor isomer b is trans. c 0.2 equiv of CuI was
used, and the reaction was run at 0 °C to rt. d With 0.2 equiv of CuCl, the
yield was 13%. e nd: not determined. f With 0.2 equiv of CuCl, yield was
71% and dr ) 91:9. g With 0.2 equiv of CuCl, yield was 48% and dr )
86:14. h PMP: p-methoxyphenyl. i With 0.2 equiv of CuCl and 4.8 equiv
of Hünig’s base, yield was 54% and dr ) 87:13.

Scheme 2. Establishing the Feasibility and Stereochemistry
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we prepared cis-27a in 44-62% yield from 11 with an a:b
ratio of in the range of 10:1-19:1. Hydrogenation with Boc-
protection followed by oxidative removal of the PMP group
in cis-27a with use of CAN provided chiral R-amino-�-
lactam 29. An R-epimerization of cis-27a via refluxing in
toluene in the presence of DBU for 40 h afforded trans-
27a, which could be converted to the isomeric R-amino-�-
lactam 31 through the same sequence used for cis-27a.

During the isolation of cis-27a, we were able to attain a
clean sample of the minor isomer trans-27b and confirmed
its relative stereochemistry between the R- and �-carbons
using NOE experiments.14 We also isolated a small sample
of cis-27b and spectroscopically observed a trace amount
of trans-27a. Neither had been seen in other reactions. The
assignment of cis-27b was confirmed through R-epimeriza-
tion to trans-27b with DBU.14 With these assignments, this
ynamide-Kinugasa reaction became very intriguing from a
stereochemical perspective. A unified mechanistic model is
proposed in Scheme 4.

On the basis of the assumption that the more reactive of
the two π-bonds is the one conjugated with the nitrogen lone
pair (all in red), the Cu(I)-promoted nitrone-[3 + 2]
cycloaddition via intermediate A could diverge into two
pathways that would determine the �-carbon stereochemistry.
The preferred pathway would involve the approaching nitrone
with its vinyl hydrogen (in red) being syn to HA on the chiral
auxiliary and the larger R group (c-hex in blue) anti to HA

to minimize steric interactions. This pathway would lead to
intermediate B (skipping respective intermediates 2 and 3
shown in Scheme 1), and while B could undergo protonation
at the more open bottom face away from the phenyl rings,
it would lead to the trans-isomer a that was not observed
from most of these reactions. Therefore, we reason that a
facially selective protonation takes place instead via inter-
mediate C on the top face to give cis-27a because C is more
stable than B given the presence of allylic strain.

On the other hand, the less favorable cycloaddition
pathway would involve the larger R group approaching syn
relative to HA on the auxiliary, and should lead to minor
isomers b via related intermediate D. We believe a facially
selective protonation also occurs here in D to provide trans-
27b as the most dominant minor isomer. Intriguingly,
B3LYP-6-31G* calculations reveal that trans-27a is ∼2.50
kcal mol-1 more stable than cis-27a, and trans-27b is ∼4.86
kcal mol-1 more stable than cis-27b. This implies that for
the major reaction pathway, a facially selective protonation
gives the kinetic product cis-27a, whereas a selective
protonation in the minor reaction pathway gave the more
stable trans-27b. Resubjecting cis-27b to the same reaction
conditions did not lead to any R-epimerization or observation
of trans-27b. Therefore, despite being more stable, trans
isomers are not likely derived from R-epimerizations of their
respective cis isomers.

We have described here a highly stereoselective ynamide-
Kinugasa reaction and featured its application as a stereo-
selective manifold for constructing chiral R-amino-�-lactam.
A proposed model reveals that the observed selectivity
requires both the initial cycloaddition and subsequent pro-
tonation to be stereoselective.
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Scheme 3. Synthesis of Chiral R-Amino-�-lactams

Scheme 4. A Proposed Mechanistic Model
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