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A highly stereoselective synthesis of chiral o-amino-f-lactam through an ynamide-Kinugasa reaction is described. In addition, a mechanistic
model is illustrated here to rationalize the observed diastereoselectivity, which depends on both the initial [3 + 2] cycloaddition step and the

subsequent protonation for which both are highly selective.

Since Staudinger’s first preparation,* A-lactams have captured
the attention of synthetic and medicinal communities for
nearly a century.>® Rendered famous by penicillin, those
substituted with o-amino groups are among the most sought
after S-lactams. Consequently, an impressive array of ste-
reoselective approaches toward chiral o-amino-3-lactams has
been reported.*® While the Kinugasa reaction”® represents
an elegant approach toward g-lactams, it has remained
relatively unexplored until recently, and this is particularly
true in the development of enantioselective protocols.®™**

T This paper is dedicated in memory of Dr. Christopher R. Schmid
(1959-2007) of Eli Lilly.
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With such immense significance, we recognized the unique
potential of an ynamide-Kinugasa reaction. As shown in
Scheme 1, reactions of chiral ynamides 1*2** with nitrones
in a Kinugasa manner would not only lead to a stereoselective
manifold for constructing S-lactams, but also more impor-
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Scheme 1. An Ynamide-Kinugasa Reaction
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tantly provide a direct synthesis of chiral a-amino-j3-lactams
(see 4). We report here a highly stereoselective ynamide-
Kinugasa reaction.

The feasibility of an ynamide-Kinugasa reaction was
readily established by employing ynamide 5 (Scheme 2).
With 0.2 equiv of CuCl and 4.0 equiv of Cy,NMe, the
reaction of 5 with N-benzylidene-N-phenylnitrone proceeded
effectively in CHsCN at rt to give S-lactam cis-6a’* in 73%
yield as the major isomer. X-ray structural analysis unam-
biguously revealed that the relative stereochemistry between
the o- and f-carbons is cis. This suggests that the minor
isomer(s) could be cis-6b and/or trans-6a/6b with a/b
isomers differing at the /-carbon stereochemistry.

The scope of this reaction is distinctly diverse. As shown
in Table 1, we found several interesting features: (1)
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Scheme 2. Establishing the Feasibility and Stereochemistry
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rate (entries 2 and 3 versus 1); (2) Cul is also feasible as a
catalyst and can be more effective than CuCl (entries 3, 6,
8, 13, and 15); and (3) the minor isomer b was assigned as
trans initially based on proton coupling constants®® (entries
5-7, 11, and 13) and was confirmed later via NOE
experiments (vide infra).

An immediate application of this reaction is the preparation
of chiral a-amino-S-lactams (Scheme 3). Toward this goal,

Table 1. Scope of the Ynamide-Kinugasa Reaction

entry  ynamides a-amino-f-lactams yield [%]® dr: [a:b]°

o] O._o
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& Reaction conditions are as shown in Scheme 2 unless otherwise
indicated. All are isolated yields. ° dr is determined by using *H NMR. All
isomers a are cis. The minor isomer b is trans. ©0.2 equiv of Cul was
used, and the reaction was run at 0 °C to rt. ¢ With 0.2 equiv of CuCl, the
yield was 13%. ©nd: not determined. " With 0.2 equiv of CuCl, yield was
71% and dr = 91:9. ¢ With 0.2 equiv of CuCl, yield was 48% and dr =
86:14. " PMP: p-methoxyphenyl. ' With 0.2 equiv of CuCl and 4.8 equiv
of Hunig’s base, yield was 54% and dr = 87:13.
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Scheme 3. Synthesis of Chiral a-Amino-{-lactams
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we prepared cis-27a in 44—62% yield from 11 with an a:b
ratio of in the range of 10:1—19:1. Hydrogenation with Boc-
protection followed by oxidative removal of the PMP group
in cis-27a with use of CAN provided chiral a-amino-3-
lactam 29. An a-epimerization of cis-27a via refluxing in
toluene in the presence of DBU for 40 h afforded trans-
27a, which could be converted to the isomeric a-amino-3-
lactam 31 through the same sequence used for cis-27a.

During the isolation of cis-27a, we were able to attain a
clean sample of the minor isomer trans-27b and confirmed
its relative stereochemistry between the a- and S-carbons
using NOE experiments.** We also isolated a small sample
of cis-27b and spectroscopically observed a trace amount
of trans-27a. Neither had been seen in other reactions. The
assignment of cis-27b was confirmed through a-epimeriza-
tion to trans-27b with DBU.* With these assignments, this
ynamide-Kinugasa reaction became very intriguing from a
stereochemical perspective. A unified mechanistic model is
proposed in Scheme 4.

Scheme 4. A Proposed Mechanistic Model
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On the basis of the assumption that the more reactive of
the two sr-bonds is the one conjugated with the nitrogen lone
pair (all in red), the Cu(l)-promoted nitrone-[3 + 2]
cycloaddition via intermediate A could diverge into two
pathways that would determine the 5-carbon stereochemistry.
The preferred pathway would involve the approaching nitrone
with its vinyl hydrogen (in red) being syn to Ha on the chiral
auxiliary and the larger R group (c-hex in blue) anti to Ha
to minimize steric interactions. This pathway would lead to
intermediate B (skipping respective intermediates 2 and 3
shown in Scheme 1), and while B could undergo protonation
at the more open bottom face away from the phenyl rings,
it would lead to the trans-isomer a that was not observed
from most of these reactions. Therefore, we reason that a
facially selective protonation takes place instead via inter-
mediate C on the top face to give cis-27a because C is more
stable than B given the presence of allylic strain.

On the other hand, the less favorable cycloaddition
pathway would involve the larger R group approaching syn
relative to Ha on the auxiliary, and should lead to minor
isomers b via related intermediate D. We believe a facially
selective protonation also occurs here in D to provide trans-
27b as the most dominant minor isomer. Intriguingly,
B3LYP-6-31G* calculations reveal that trans-27a is ~2.50
kcal mol~* more stable than cis-27a, and trans-27b is ~4.86
kcal mol~* more stable than cis-27b. This implies that for
the major reaction pathway, a facially selective protonation
gives the Kkinetic product cis-27a, whereas a selective
protonation in the minor reaction pathway gave the more
stable trans-27b. Resubjecting cis-27b to the same reaction
conditions did not lead to any o-epimerization or observation
of trans-27b. Therefore, despite being more stable, trans
isomers are not likely derived from o-epimerizations of their
respective cis isomers.

We have described here a highly stereoselective ynamide-
Kinugasa reaction and featured its application as a stereo-
selective manifold for constructing chiral a-amino-/-lactam.
A proposed model reveals that the observed selectivity
requires both the initial cycloaddition and subsequent pro-
tonation to be stereoselective.
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